Localized Prostate Cancer and Its Treatment

Greetings!
Understanding prostate cancer and choosing among the various treatment options can be a difficult and anxiety-arousing process. We have prepared this publication to help you learn more about this cancer so you can feel confident in the course of treatment you choose. Advances in the early detection of prostate cancer mean that the disease can be treated effectively in most men. There is good reason to feel hope and optimism for your future.

For some people, most of the information presented here may be completely new. Others may already be well informed about prostate cancer and its treatment. Either way, please do not feel that this material has to be fully absorbed and understood in one reading. Reviewing portions of the material and discussing it with your physicians, family, and other men with prostate cancer can make this information more useful.

Areas covered in this guide include:
• How prostate cancer is detected and diagnosed
• Available treatments, their effectiveness, and their effects on quality of life
• Effective ways of coping with the stress related to a cancer diagnosis

Your Feedback: We regularly revise this information to keep it up to date and make it as useful as possible to the reader. Your feedback about any aspect of this document would be much appreciated. You can e-mail your comments to sjjoost@urology.ucsf.edu, or send them by regular mail to Your Health Matters c/o Sarah Joost, Box 1695, UCSF Department of Urology, San Francisco, CA 94143-1695. If you wish to talk with a patient advocate, please call 415/514-3397. This guide, along with other urologic oncology documents, can be viewed online with this link: http://urology.ucsf.edu/patient-care/cancer/prostate-cancer Words that appear in italics are described in the glossary at the end of this document.
Table of Contents

Introduction ... 4
 How Common Is Prostate Cancer? ... 4
 Making a Treatment Decision ... 4
 Taking an Active Role ... 4

What Is Prostate Cancer? ... 4

Diagnosing and Assessing Prostate Cancer ... 5
 Screening: PSA and Digital Rectal Examination .. 5
 Diagnosis: Biopsy ... 5
 Grading the Cancer (Gleason score) .. 6
 Staging the Cancer (TNM system) .. 6
 Imaging Techniques ... 7
 Risk-Assessment Tools (CAPRA score, etc.) ... 8

New genetic tests for localized prostate cancer .. 10

Treatment Options for Localized Disease .. 10
 Active Surveillance ... 10
 Radical Prostatectomy (surgical approaches and side effects) 12
 Radiation Therapy (types and side effects) ... 15
 Hormone Therapy with Radiation .. 17
 Cryosurgery .. 17

When Further Treatment Is Needed .. 18
 Why Cancer May Recur ... 18
 The PSA as an Indicator of Remaining or Recurrent Cancer 18
 Options for Dealing with Recurrence ... 19

New Treatment Approaches and Clinical Trials ... 20
 What are Clinical Trials? ... 20
 Should You Participate? ... 20
 Accessing Clinical Trials at UCSF ... 21
Complementary and Alternative Therapies .. 21
 Definitions ... 21
 Nutrition and Prostate Cancer (healthy eating guidelines) 21
 Exercise and Prostate Cancer ... 22
 Stress Reduction .. 23

Coping with Prostate Cancer ... 24
 Dealing with Anxiety, Distress, and Uncertainty 24
 Getting Second Opinions .. 25
 Keeping Good Records ... 25
 Involving the Family ... 25
 Sexuality and Intimacy ... 26
 Support Groups .. 26
 Keeping a Positive Attitude ... 26

Glossary .. 27
Introduction

How Common Is Prostate Cancer?
Prostate cancer is the most common cancer, other than skin cancer, in American men and is the second leading cause of cancer death in men. The American Cancer Society (ACS) has estimated that each year more than 200,000 new cases of prostate cancer will be diagnosed in the United States, and about 30,000 men will die from this disease. The incidence of prostate cancer increases with age. Most men diagnosed with the disease are in their 60s and 70s, although prostate cancer is sometimes detected in men in their 30s and 40s. The good news is that the 5-year-survival rate for all stages of prostate cancer has increased from 69% to almost 99% over the past 20 years. Possible reasons for this include increased public awareness, earlier detection, and continued improvements in the treatment of this cancer. However, the death rate for prostate cancer is twice as high in African American men than in the general population.

Take Time to Make a Treatment Decision
Most prostate cancers are slow-growing, but some grow more quickly and spread, or metastasize, to other parts of the body. If unchecked, these spreading cancers can be fatal. Because prostate cancer usually grows slowly, immediate action to treat is rarely necessary. Many men can safely take months to decide what to do. The decision process can be complicated. The treatment(s) chosen can significantly affect your life, which makes it especially important to take the time needed to educate yourself and confidently choose the treatment that is appropriate for you.

Take an Active Role
It is essential that you take an active role in becoming informed about your condition, choosing treatment, dealing with the effects of the treatment, and monitoring the outcome. During the course of this process, you will be meeting and working with a number of physicians and other health care professionals. While you will be relying upon those you choose to work with for their advice and treatment, you should feel that you are in charge of the decision-making process.

You need to be fully informed about the pros and cons of the various treatments, request second opinions, and then decide what is best for you. Your decision will depend upon your particular situation and your personal priorities. Learning about prostate cancer from a variety of sources, involving your family in the process, and attending a support group can help you to take charge and develop a more confident and positive attitude. Ultimately, you need to choose the treatment(s) that you are most comfortable with.

What Is Prostate Cancer?
The prostate is a walnut-sized organ that is part of the male reproductive system. It is located below the bladder and in front of the rectum. It surrounds part of the urethra, the tube that carries urine from the bladder to outside the body. The gland's main function is to produce fluid for semen, which nourishes and transports sperm cells.

When cells grow abnormally and form a mass, it is called a tumor. Some tumors are benign (not likely to be life-threatening) and others are malignant (cancerous and potentially life-threatening). Over the course of a man's lifetime, some prostate cells may become cancerous. Sometimes, the cancer can be very small and confined within the
prostate. In other cases, the cancer is larger and present in more than one site. Through a process
called metastasis, the cancer cells can spread outside the prostate to nearby lymph nodes or organs
in the pelvic area. They eventually can spread to more distant parts of the body through the blood and
lymph systems—most often to the bones. Determining whether the cancer is confined to the prostate or
whether it has spread either locally or to more distant sites is very important in selecting treatment.

Localized prostate cancer refers to cancer that is confined to the prostate. Locally advanced cancer
refers to cancer that may have spread outside of the prostate but not into other organs, nearby lymph
nodes, or the blood stream. There is hope for cure in both stages, however, locally advanced tumors
may require several types of treatment to achieve this.

Diagnosing and Assessing Prostate Cancer

This section describes how prostate cancer is diagnosed and what factors are used to determine how
aggressive the tumor is.

Screening: Prostate-Specific Antigen and Digital Rectal Examination
Most prostate cancers in the United States are identified through a simple blood test for prostate-
specific antigen (PSA) or a physical examination called digital rectal examination (DRE). Prostate-
specific antigen is a protein in the blood produced by prostate cells. It is widely used as a screening
test for prostate cancer. The higher the PSA level, the more likely that prostate cancer is present.
In a DRE, a doctor inserts a gloved, lubricated finger into a man’s rectum to feel for any irregular or
abnormally firm area in the prostate. While most prostate cancers are detected by PSA results, some
cancers produce little PSA but are detected by DRE.

An elevated PSA may suggest an increased risk of prostate cancer, but elevations in the PSA can
also occur in benign conditions. Most commonly, Benign Prostatic Hyperplasia (BPH). The prostate
enlarges, in most men over their lifetime. In some circumstances, your physician may order additional
tests to help determine whether a PSA elevation is the result of a benign condition. These tests
may include a repeat PSA test, a "free PSA test," and/or a "PCA3" test. Sometimes your physician
may prescribe antibiotics prior to further testing to eliminate the possibility of an infection being
responsible for an elevated PSA. The decision to investigate further with a prostate biopsy is based on
a combination of factors, including the PSA, DRE, and other test results, family history, age, race and
other medical conditions you may have. A biopsy should be performed only after discussing the risks
and benefits of the procedure with a physician.

Diagnosis
Making a formal diagnosis of prostate cancer requires a needle biopsy. The tissue samples obtained
from the prostate are then examined by a pathologist in a laboratory to confirm the diagnosis.

Transrectal ultrasound (TRUS) guided biopsy. A TRUS uses sound waves produced by a small probe
placed in the rectum to create an image of the prostate on a video screen. The transrectal ultrasound
image can sometimes provide valuable information about whether the cancer has reached the edge of
or broken through the capsule of the prostate gland. The TRUS also provides an estimate of the size of
the prostate.
Whether or not the image reveals suspicious areas, the prostate is systematically biopsied for signs of cancer. An instrument called a biopsy needle is used to remove a series of tissue samples. The samples are then sent to a laboratory for examination. A minimum of 12 samples and up to 20 should be removed from different areas of the prostate and especially from any suspicious locations. The 10-15 minute procedure usually causes only mild discomfort and a little bleeding. An antibiotic is usually given before and after the procedure to reduce the risk of infection. However, there is still a small (1%) risk of infection from a prostate needle biopsy.

Sometimes, the first biopsy does not identify any cancer, even when it is strongly suggested by the patient's symptoms or PSA test results. Repeat biopsies may be required in such cases.

Grading the Cancer

If cancer is found in the prostate biopsy sample, it is graded to estimate how abnormal the cells look. The more abnormal the cells, the more likely the tumor will grow aggressively. The most commonly used prostate cancer grading system is called the **Gleason** system. The pathologist examines the cancer cells under a microscope and evaluates how closely the arrangement of the cancer cells in each biopsy sample matches that of normal prostate cells, using a scale of 1 (most like normal cells) through 5 (least like normal cells).

Prostate cancers that appear to be low-grade are labeled Gleason pattern 3; intermediate grade cells are labeled pattern 4 and the most aggressive cells are pattern 5. Prostate cancers can be heterogeneous (having a mixture of different cells), so two numbers are assigned to each cancer. The first number is the most common cell type and the second is the second most common cell type. The two grades are then added to give the overall Gleason score. On occasion a "tertiary" grade may be assigned to the third most common grade.

Importance of the Gleason Score

The Gleason score is essential for treatment planning and decision-making. Every prostate cancer patient should know his Gleason score. Those with low scores (6 or less) are more likely to have a less aggressive, slower growing cancer. Gleason 6 (3 + 3) is the most common score. Gleason 7 indicates intermediate risk; a Gleason 3 + 4 may be a less aggressive cancer than a 4 + 3, so knowing both the primary and secondary grades is helpful. Gleason scores of 8 to 10 indicate high-risk cancers that could grow and spread more rapidly. Since accurate grading of the cancer depends in part on the skill and experience of the **pathologist**, it may be appropriate to get a second opinion on the Gleason score.

Staging the Cancer

A prostate cancer's **stage** indicates how far it has spread. The commonly used staging system is the TNM system. This describes the extent of the primary tumor (T), the absence or presence of metastasis to nearby lymph nodes (N), and the absence or presence of distant metastasis (M).
T Categories – There are two types of T classifications for prostate cancer. The clinical stage is based on the digital rectal examination (DRE) and imaging findings. The clinical stage is used in making treatment decisions. It is important to note that both the clinical stage and biopsy grade are estimates and may not reflect what is actually found when surgery is performed. (The second T classification type is the pathological stage, which is determined by taking a close look at the prostate after it is surgically removed.)

- **T1** refers to a tumor that is not felt during a digital rectal exam or seen on TRUS. T1a and T1b describe cancers found incidentally during a surgical procedure done to relieve symptoms of benign prostatic hyperplasia. T1c cancers are those detected by an elevated PSA only. T1c is now the most common stage for newly diagnosed men.

- **T2** refers to a cancer that is felt by the doctor during the digital rectal examination, or is seen with imaging studies, and is believed to be confined within the prostate gland. If the cancer is in one half or less of only one side of the prostate, the stage is T2a. If the cancer is in more than one half of only one side of the prostate, the stage is T2b. If the cancer is in both sides of the prostate, the stage is T2c.

- **T3** – Refers to a cancer that has extended beyond the capsule of the prostate and/or to the seminal vesicles. This is determined by either imaging studies or biopsy. If the cancer can be felt during a digital rectal examination and extends outside the prostate on one side, but not to the seminal vesicles, the stage is T3a. If the cancer has spread to the seminal vesicles, the stage is T3b.

- **T4** – The cancer has spread to other organs next to the prostate. Imaging tests can detect this more advanced tumor stage, which is very uncommon in contemporary medical practice.

N Categories – N0 means the cancer has not spread to any lymph nodes. N1 or N+ indicates spread to one or more nearby (regional) pelvic lymph nodes. (Nx indicates that regional lymph nodes have not been assessed.)

M Categories – M0 means the cancer has not metastasized beyond the regional lymph nodes. M1a means metastases are present in distant lymph nodes. M1b means the cancer has spread to the bones. M1c means the cancer has spread to other distant organs. (Mx indicates that distant metastases have not been assessed.)

It is also important to consider the extent of the cancer in relation to the samples taken during needle biopsy of the prostate. If 1 of 12 needle biopsies shows prostate cancer, it suggests a smaller tumor than if 8 of 12 show cancer. Likewise, the extent of cancer within each needle biopsy sample is also sometimes accessed.

Imaging Techniques

Sometimes imaging may be helpful in determining whether or not the cancer is confined to the prostate.

Color Doppler Ultrasound – Standard transrectal ultrasound produces black and white images of the structure of the prostate and adjoining tissues. Color Doppler ultrasound can detect blood flow patterns in tissue. This is important because cancerous areas sometimes show an increase in the density of blood vessels.

Bone Scan – A bone scan may show whether cancer has spread from the prostate to the bones. During the scan, a very small amount of radioactive material is injected into the blood stream. This is then absorbed by diseased bone cells. The location of diseased bone can then be seen on the total body bone scan image. Although a scan may suggest that metastatic cancer is present, arthritis and other bone diseases can create a similar pattern. Very small metastases may not be detected by this scan. Usually, a bone scan is not ordered unless there are signs of aggressive disease, such as an elevated PSA level (>15ng/ml), a high Gleason score, a large tumor, or bone pain.
Computed Tomography (CT scan or CAT scan) – This study uses a rotating X-ray beam to create a series of pictures of the body from many angles. These are put together into a detailed cross-sectional image. This scan can reveal abnormally enlarged pelvic lymph nodes or spread of the cancer to other internal organs. A CT scan usually is not ordered unless there is an elevated PSA or a high Gleason score.

Magnetic Resonance Imaging (MRI) – This study is similar to a CT scan, except that magnetic fields are used instead of X-rays to create images. MRI scans are not effective in revealing microscopic cancers, although an MRI using an endorectal coil may provide a better image of the prostate gland than a routine MRI of the pelvis. A multiparametric MRI uses special techniques to better demonstrate the extent of disease. Magnetic resonance spectroscopy imaging (MRSI) is a refinement of the endorectal MRI. Magnetic resonance spectroscopy detects levels of certain compounds that are present in different amounts in benign and cancerous prostate tissues. These are then mapped on a regular MRI image to indicate possible cancer sites. This method can be used to image the prostate gland, but does not image the lymph nodes. MRSI may also be useful in monitoring the prostate after radiation therapy. Currently, its use remains investigational.

Other Imaging Techniques – Under some circumstances, other imaging studies may be indicated such as PET/CT, Combidx (not FDA-approved at this time), and sentinel node imaging. Since there is no general agreement as to the clinical indication for using these tests, they will not be discussed here.

Prostate Cancer Risk Assessment
Prostate cancer is a spectrum of disease. Some prostate cancers progress quickly and need aggressive treatment; others grow slowly and can be managed conservatively. It is important to learn the characteristics of the cancer before making treatment decisions. There are many ways to determine prostate cancer risk, most of which use information such as the PSA, Gleason score (tumor grade), and the tumor extent (tumor stage). There are also probability tools that help assess the risk that a cancer will be more aggressive. These are based on information gathered from large databases of men. Three of the most commonly used estimation tools are:

The Partin tables (urology.jhu.edu/prostate/partintables.php), which predict whether the cancer is confined to the prostate.

The Kattan nomogram (www.nomograms.org) which predicts a variety of outcomes such as tumor stage and the risk of cancer recurrence after surgery or radiation.
The UCSF-CAPRA score (http://urology.ucsf.edu/research/cancer/prostate-cancer-risk-assessment-and-the-ucsf-capra-score). UCSF developed the Cancer of the Prostate Risk Assessment (UCSF-CAPRA) as a straightforward, reliable means of defining prostate cancer risk. The CAPRA provides a simple 0 to 10 score that can be calculated easily without tables or software. The CAPRA score is valid for many treatment approaches, including surgery, radiation therapy, and hormonal therapy. It predicts an individual’s likelihood of cancer recurrence, metastasis, and of dying from prostate cancer or some other cause. The score is calculated by assigning points to the following variables: age at diagnosis, PSA at diagnosis, Gleason score of the biopsy, clinical stage of the cancer and the percent of biopsy samples that show cancer. These variables are outlined below.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>Points</th>
<th>Variable</th>
<th>Level</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSA</td>
<td>≤6</td>
<td>0</td>
<td>T-stage</td>
<td>T1/T2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6.1-10</td>
<td>1</td>
<td></td>
<td>T3a</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10.1-20</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.1-30</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>30</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gleason</td>
<td>1-3/1-3</td>
<td>0</td>
<td>% of biopsy</td>
<td><34%</td>
<td>0</td>
</tr>
<tr>
<td>(primary/</td>
<td></td>
<td></td>
<td>cores positive</td>
<td>≥34%</td>
<td>1</td>
</tr>
<tr>
<td>secondary)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-3/4-5</td>
<td>1</td>
<td>Age</td>
<td><50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4-5/1-5</td>
<td>3</td>
<td></td>
<td>≥50</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum points from each variable for 0-10 score

*If your clinical stage is higher then T3a, you are still assigned 1 point on the CAPRA score under T stage

How the UCSF-CAPRA score is determined: As an example, a 51-year-old man (1 point) with a PSA of 6.2 (1 pt.), a Gleason score of 3+4 (1 pt.), and stage T2c (0 pts.) prostate cancer involving 2 of 8 (25%) biopsy cores (0 pts.) would have a CAPRA score of 3. A 48-year-old man (0 pts.) with a PSA of 15.2 (2 pts.), a Gleason score of 4+3 (3 pts.), and stage T1c (0 pts.) prostate cancer involving 5 of 10 (50%) cores (1 pt.) would have a score of 6.

What does this score mean? A CAPRA score of 0 to 2 indicates relatively low-risk disease. A CAPRA score of 3 to 5 indicates intermediate-risk disease. A CAPRA score of 6 to 10 indicates high-risk disease.

In summary, risk assessment is an important part of making a decision on how to treat prostate cancer. The CAPRA score is one of several risk assessment options. Regardless of the specific approach taken, treatment must be guided by the risk that the cancer will spread.

The CAPRA scoring system is not intended to replace individualized doctor-patient decision-making. However, it does provide a straightforward tool for classifying disease risk—one that is useful in patient care and research.
New genetic tests for localized prostate cancer

A number of new genetic tests can offer additional information about prostate cancer risk. Results from these tests can supplement what is learned from the PSA, Gleason grade, clinical stage, imaging tests, etc.

These genetic tests are performed with tissue obtained either from a biopsy or prostatectomy. They measure expression of various genes that relate to how aggressive a cancer is likely to be. They indicate how rapidly cancer cells are growing and how abnormal they are relative to normal cells at the genetic level. They do not provide a clear answer about whether a cancer will progress, but they do add valuable information to help guide treatment decisions.

Tests that are currently available include the Prolaris® assay from Myriad Genetics, the Oncotype DX® test from Genomic Health, and the Decipher™ test from GenomeDx Biosciences. There is some degree of overlap among these tests, and the ideal use for each differs, depending on the clinical situation. Your doctor can discuss with you which test will be most valuable in your case.

Treatment Options for Localized Disease

Deciding how to treat prostate cancer can be a confusing process. Each treatment has its own mix of benefits, risks and impacts on quality of life. The good news is that several treatments are very successful for many prostate cancer patients, either in providing a cure or keeping the cancer under control for many years. However, your physician cannot always tell you specifically which treatment to choose, because for most men, the choice is significantly influenced by personal preferences.

In addition to the tumor risk factors described above, that choice is influenced by factors such as:

- Your age and life expectancy
- Your general health and specific medical conditions
- Cost and practical considerations
- Attitudes about cure and/or living with cancer
- Your needs, concerns, values and social relationships
- Your feelings about specific side effects which can include urinary incontinence, erectile dysfunction, bowel problems, and other effects which will be discussed in greater detail below.

You and your physicians may choose a combination of the treatments described below.

Active Surveillance

As previously discussed, many prostate cancers do not pose an immediate risk to health and may not require treatment. Active surveillance is a way to monitor low-risk prostate cancer—cancer that is not an immediate risk to your health or well-being.

The ideal candidate for active surveillance has:

- Low-risk biopsy results, including: a prostate biopsy Gleason score of 6 or less (no pattern 4 or 5), cancer in no more than one third of the total needle samples, PSA density <0.15 and cancer in no more than 50 percent of any single needle sample. PSA density is simply the serum PSA divided by the prostate size. It is very important that the biopsy be performed correctly; sampling enough of the prostate to be sure the cancer is not large and/or more aggressive. Therefore, 12 or more needle samples should be taken during the prostate biopsy. If the initial biopsy was not extensive enough, another may be needed before deciding on active surveillance.
A PSA at the time of diagnosis of 10 or less that does not change much over time.

Ultrasound, physical examination (digital-rectal examination) or other test results that suggest the cancer has not spread outside the prostate gland.

However, there is some flexibility within these guidelines. Carefully selected and highly motivated men with slightly higher-risk disease characteristics may also be candidates for active surveillance. You and your doctor can discuss whether you will be a good candidate for this option.

If you choose active surveillance, you will visit your doctor for regular checkups. During these visits, you will undergo tests to find out if there have been any changes in your cancer. The tests usually include:

- a blood test to measure prostate-specific antigen (PSA) every 3 – 6 months
- a prostate ultrasound every 6 to 12 months
- a periodic prostate biopsy (every 1 to 2 years initially, less frequent with longer follow-up in select cases)
- many refinements in risk assessment including imaging (MRI), genetic testing of the tumor, etc., are advancing to better assess risk and the appropriateness of continuing active surveillance for treatment.

If the tests suggest the cancer is growing or becoming more aggressive, your doctor may recommend that you have treatment. But if the changes are small or nonexistent, your doctor may advise that it is safe to continue active surveillance.

Making lifestyle changes such as improving your nutrition, reducing stress and getting more exercise can also be part of active surveillance. A study at UCSF showed that men on active surveillance who made lifestyle changes had lower PSA levels and lower rates of treatment than men who did not make these changes. You may choose to join diet and lifestyle studies at UCSF or support groups as part of your active surveillance. Making healthy lifestyle choices can also lower your risk of cardiovascular disease—the number one cause of death in men with or without prostate cancer. (See pp. 21 for more information.)

Is active surveillance right for you?

There are some risks associated with active surveillance. They include a low risk of infection with every biopsy and a very low risk of cancer progressing in any one interval of surveillance. Sometimes men choose active surveillance for a period of time and then decide to undergo treatment.

At UCSF, over 1,000 men have chosen active surveillance to initially manage their prostate cancer. This is one of the largest groups of patients on active surveillance in the world. About one in five of these men has received treatment, usually within 3-5 years of diagnosis. So far, treatment results for these men appear to be similar to what would have been expected had they chosen treatment right after their original diagnosis. Based on our experience and those reported from other centers, the risk of significant cancer progression in the short to intermediate term, while not zero, appears to be very low.

The most common reason for seeking treatment is a biopsy that shows the cancer is growing or becoming more aggressive in appearance. Changes in PSA or ultrasound results may also lead to treatment. Your doctor is happy to discuss any questions you have about active surveillance. Together, you can decide whether this is a good option for you.
Radical Prostatectomy

A radical prostatectomy is surgery to remove the entire prostate gland and seminal vesicles after a diagnosis of prostate cancer is made. Sometimes, nearby (regional) lymph nodes are also removed. Radical prostatectomy is one of many options for the treatment of prostate cancer, and you should carefully discuss all treatment options with your physician.

Radical prostatectomy can be done through an "open" incision made in the abdomen (radical retropubic prostatectomy) or through an incision in the perineum, the area between the scrotum and the anus (radical perineal prostatectomy). Alternatively, it may be done with several small incisions in a procedure called laparoscopic radical prostatectomy. Laparoscopy is a technique in which surgery is performed by making small incisions and passing specially designed telescopes and instruments into the body. Laparoscopic radical prostatectomy results in less blood loss, less discomfort, and an earlier return to work.

At UCSF we perform laparoscopic radical prostatectomies using a surgical system called the da Vinci® robot. The system offers excellent magnification and surgical precision. Outcomes in terms of cancer control, urinary function and sexual function are at least as good as those obtained via radical retropubic prostatectomy. Other short-term complications appear to be less common with the robot assisted approach.

Other subtle differences between these procedures for radical prostatectomy can be discussed with your surgeon. At UCSF, the vast majority of procedures are done using a robotic approach for the following reasons: the robotic approach appears to be able to remove the prostate cancer equally as well as the open approach, it is associated with less blood loss and an earlier return to normal activities and may be associated with an enhanced ability to spare the neurovascular bundles that control erectile function.

At the time of radical prostatectomy, the entire prostate gland, surrounding tissue, and seminal vesicles are removed. The seminal vesicles are glandular structures lying next to the prostate, which may be invaded by prostate cancer. Once the prostate gland and seminal vesicles are removed, the bladder is reattached to the urethra. A catheter is left in the bladder to allow urine to drain while healing takes place (usually for about a week). In addition, an abdominal drain (tube that drains fluid accumulations) may be left in place for one or two days.

Why would I choose to have a radical prostatectomy?

Radical prostatectomy is one of several options for men whose prostate cancer still appears to be localized to the prostate. It allows, in most cases, for complete removal of the cancer. Once the prostate is removed, one can tell how advanced the cancer is, what the risk for cancer recurrence is, and whether or not additional treatment may be needed. It is relatively easy to follow men who have undergone radical prostatectomy to be sure their cancer is gone. Once the prostate is removed, the PSA should fall to undetectable levels within six weeks. Radiation can be given after surgery, if necessary, with a relatively limited risk of any additional side effects.

Patients who choose radical prostatectomy should be in very good health, have a life expectancy of more than 10 years, have cancer that appears to be localized to the prostate gland and have discussed all available treatment options with their doctors. Some men with prostate cancer extending beyond the prostate gland may benefit from the procedure as well. Radical prostatectomy may occasionally be an option when prostate cancer recurs after radiation or other treatments. This approach (salvage prostatectomy) carries higher risks of side effects and should be considered carefully.
What is involved in lymph node dissection?

Lymph node dissection

When prostate cancer spreads (metastasizes), it often invades the lymph nodes in the area of the prostate. For this reason, the lymph nodes close to the prostate may be removed so they can be checked for cancer. Lymph nodes can be removed as part of either an open or laparoscopic radical prostatectomy, using the same incisions. Lymph node removal is not necessary in all patients. Only those at moderate or high-risk of lymph node metastases need to undergo the procedure.

Nerve-sparing radical prostatectomy

The nerves and blood vessels (neurovascular bundles), which allow the penis to become erect, run on either side of the prostate. Either one or both of these bundles can be spared to help a man achieve erections after surgery. The best results are achieved if both bundles can be spared. Young men who are sexually active and report having very good erections before surgery are most likely to benefit from preservation of the bundles. Older men and men who report limited erections are less likely to benefit. In some cases, preservation of the bundles may not be advised due to the location or extent of the cancer. As the nerves run very close to the prostate, preservation of the bundles in some men may risk leaving cancer behind. The risks and benefits of nerve-sparing surgery should be discussed with your doctor.

Whereas urinary continence tends to return early after surgery, sexual function returns more gradually in those who have undergone nerve-sparing radical prostatectomy. Little or no function is noted immediately after surgery in most men. Erections generally improve in the first six months, and may continue to improve up to 18 to 24 months after surgery. Return of erections may be helped by early use of oral drugs (Viagra/Levitra/Cialis) or by drugs that are injected into the penis. You should discuss these and other options with your doctor.

What should you expect after surgery?

Managing incontinence

You will be discharged from the hospital with a catheter in place to drain urine from the bladder into a collection bag. After your bladder catheter is removed (typically 7-10 days following surgery), you may have leakage of urine (incontinence), which may be substantial in the weeks following surgery. While urinary continence returns relatively quickly for many, it may take a number of months for some. Your doctor or nurse will teach you exercises you can do to strengthen your sphincter muscle. These Kegel exercises, which can be started well in advance of surgery, will tend to decrease the amount of time it takes you to recover continence. In the meantime, you can buy incontinence pads to protect your clothing and waterproof underpads for your bedding. Bladder control should steadily return in the weeks following surgery, and long-term incontinence is rare.
What about sex?

Erectile dysfunction (ED), "the consistent or recurrent inability of a man to attain and/or maintain a penile erection sufficient for sexual performance," is common after radical prostatectomy but often improves over time. The level of ED that results after surgery depends on the degree to which the nerves were spared as well as other factors: age, other medical conditions, medications, lifestyle, depression and anxiety. However, despite good pre-operative sexual function and seemingly good surgical technique, some patients may not have consistent return of full erections without the use of additional techniques. To facilitate the return, your doctor will prescribe oral drugs (Viagra/Levitra/Cialis) and/or other techniques (self-injection, urethral suppositories, and vacuum devices). The return of erections usually takes several months, and recovery may proceed for up to 2 years or more. Your ability to have an orgasm (climax) should remain intact. You will not be able to ejaculate, as the prostate and seminal vesicles have been removed. This is sometimes referred to as a dry orgasm. You may produce some secretions because small glands in the urethra remain following surgery. If your doctor was unable to spare the neurovascular bundles, you should discuss options for treatments that can allow you to remain sexually active. Those men who may want to father children after having their prostatectomy should consider sperm banking before the operation.

What is the pathology report and how is it interpreted?

Once the prostate gland and lymph nodes are removed, a pathologist will coat the prostate with ink and place all the tissues in substances that preserve the structure of the tissues. This allows the pathologist to detect the extent of the cancer using the microscope. The ink coating lets the pathologist see how close any cancer comes to the edge of the prostate and surrounding removed tissue. Three main features are described in the pathology report: cancer grade, cancer stage, and margin status. Cancer grade and stage are evaluated using the same criteria as in the presurgical prostate biopsy (see page 7). Margin status refers to how close the cancer comes to the edge of the prostate gland and surrounding removed tissue.

A positive margin means that the pathologist notices that cancer cells are at the very edge of the prostate or surrounding tissue. The pathologist will note the number and location of any positive margins. Those patients with positive surgical margins (especially if the positive margins are extensive and/or multiple) are at an increased risk of cancer recurrence.

It is important to note that many patients with positive margins are cured by prostatectomy alone and do not require further treatment. Depending on the number and extent of positive margins, your physician may recommend post-operative radiation to decrease the risk of recurrence. This decision may be guided by the PSA outcomes, as discussed in the next section.

Do I need any additional treatment?

Usually, you will not need any additional treatment after a radical prostatectomy. You and your physician will make a decision on the need for additional treatment based on the pathology report and your PSA level after surgery. After surgery, your PSA will be determined through a special version of the test, called an ultra-sensitive PSA, which can detect very low levels of PSA. Your ultra-sensitive PSA should drop to undetectable levels after surgery. It is advised if possible to go to the same laboratory—specifically, one which is capable of running the ultrasensitive assay—when getting blood drawn for the ultra-sensitive PSA, since different labs have different testing capabilities and can produce different results.

On occasion, radiation, hormonal therapy or any one of a number of new agents being evaluated in clinical trials may be given if your cancer was extensive or if it recurs in the future. All patients should have regular check-ups including ultrasensitive PSA blood tests, and in very selected cases, imaging tests (bone scan, CT scan, MRI, etc.).
Radiation Therapy

Unlike radical prostatectomy which seeks to cure cancer by removing it, radiation therapy is designed
to cure the disease by killing cancer cells in place. Radiation can be given as external beam radiation
therapy (EBRT) and/or as brachytherapy (temporarily or permanently implanting radiation “seeds”).

External Beam Radiation Therapy (EBRT). With EBRT, radiation in the form of photons or protons
is focused from a source outside the body on prostate and surrounding areas. Imaging studies are
performed to locate the prostate gland in relation to the surrounding structures and organs. Then,
a treatment plan is designed to guide where the radiation beams will be directed. Typically, internal
markers (three gold non-radioactive seeds or other types of localization devices) are placed under
transrectal ultrasound guidance into the prostate before radiation is administered. These markers help
technicians align the patient with the radiation beam during treatments. Patients are usually treated
two days per week in an outpatient center over a period of seven to eight weeks, with each treatment
session lasting approximately 10 to 15 minutes. The number of treatments will be reduced, typically
to five weeks, if EBRT is combined with brachytherapy. EBRT can also be used to treat pelvic lymph
nodes in men with intermediate or high-risk disease. EBRT is usually combined with 4-24 months or
more of hormonal therapy in men with intermediate to very high-risk disease.

Most radiation today is given as a type of EBRT known as intensity modulated radiation therapy
(IMRT), in which the shape and intensity of several different radiation beams can be varied during
treatment to minimize damage to surrounding tissues. In a variation of IMRT called image-guided
radiation therapy (IGRT), the prostate is imaged immediately before the start of each treatment session
to verify and adjust for the position of the gland. In another variant of IMRT, called stereotactic radiation
(e.g. CyberKnife), high doses of radiation are given over a small number of treatments (typically 4 or 5).

There is a great deal of discussion, and often misleading marketing, surrounding an alternative to
standard radiation therapy called proton beam therapy. No clinical study has ever shown any advantage
for proton beam therapy in terms of cancer control or quality of life preservation as compared to other
radiation treatments.

Many carefully-controlled studies have suggested that in men with intermediate and high-risk prostate
cancer, long-term survival may be better with surgery than with EBRT, adding brachytherapy to EBRT
may reduce this difference.

Side effects of external beam radiotherapy

As with any treatment, there are potential side effects to radiation therapy. These can include diarrhea,
frequent urination or defecation, a burning sensation while urinating, and occasionally blood in the urine
or stool. These symptoms usually disappear over time, and in the interim, some relief is possible with
medications or changes in diet. Patients also may experience fatigue, which can last for a month or two
after treatment stops.

Men who receive radiation therapy may develop erectile dysfunction immediately or years after the
treatment. In the long term, uncommon side effects can include scar tissue in the urethra, fistulas (holes
opening between the rectum and urinary tract, which can lead to chronic infection), and secondary
cancers of the bladder or rectum. Because of the effect on sexual function, men who may want to
father children after their radiation therapy should consider sperm banking prior to the treatment.
Brachytherapy (seed implants)

Brachytherapy uses ionizing radiation placed into and/or near the prostate gland to destroy cancer cells. Brachytherapy can be delivered using radioactive seeds placed permanently in or near the prostate, or through seed-filled narrow tubes that are placed temporarily for one or two days.

With a **permanent seed implant**, small radioactive pellets, less than the size of a grain of rice, are implanted into the prostate. These seed implants contain radioactive isotopes such as iodine-125, palladium-103 or cesium-131. The seeds are placed inside thin hollow needles inserted through the skin of the perineum, the area between the scrotum and anus, and the needles are then withdrawn, leaving the seeds in place. The placement of the seeds follows a pre-determined computer map. This is typically a two-step procedure: first, a transrectal ultrasound is performed to map the prostate, and then seeds are then placed under either general or spinal anesthesia on an out-patient basis.

High-dose rate (HDR) brachytherapy is administered in one to three treatments over two days in the hospital. A high-energy radioactive material (iridium-192) is attached to a wire that is inserted into hollow needles placed through the perineum into the prostate. The radioactive material is left in the needles for relatively short periods of time (about 5 – 10 seconds per insertion) and then withdrawn from the prostate. The prostate is precisely imaged and a complex computer program helps determine where and how long the radioactive source is directed within the prostate. The hollow needles are withdrawn from the perineum after treatment is complete.

In many cases, a combination of radiation treatments is recommended, with brachytherapy used to treat the prostate and external beam radiotherapy used to treat the whole pelvis. In most cases, brachytherapy alone is sufficient only for men with low-risk disease and on occasion for those men with low volume intermediate disease.

Brachytherapy treatment Issues – Permanent Brachytherapy is being done only on a prostate gland that is not too large, and where the pelvic bone structure permits access to the entire prostate. In cases of an enlarged prostate, a course of hormone therapy may be required to reduce the size of the gland so a man can undergo treatment.

Side effects of brachytherapy – Many men experience some short-term side effects from brachytherapy, such as pain in the perineum, discolored urine, difficulty starting the flow of urine, incomplete emptying of the bladder, or increased urinary frequency. Erectile dysfunction may develop over time. A small percentage of men will experience other long-term side effects such as urinary urgency, urinary stress incontinence, or significant rectal or bowel irritation. Men who may want to father children after their radiation therapy should consider sperm banking prior to the treatment.

Treatment outcomes – The effectiveness of both brachytherapy and external beam radiation therapy is indicated by the extent of decline of the PSA. The lowest level of the PSA that is attained is referred to as the nadir. It may take one to five years after radiation therapy to reach a nadir. About one-third of men who have undergone brachytherapy experience a temporary “spike” or “bounce” in their PSA values 6 to 36 months after the procedure before the PSA resumes its continuing decline. Such a spike can be alarming, but should not be interpreted as treatment failure. A similar spike may occur in a smaller percentage of patients undergoing external beam radiation therapy.

The rates for successful treatment decrease for men with higher disease risk (increased CAPRA score). Higher risk patients generally receive hormone therapy together with radiation. (Often Brachytherapy with External Beam Radiation.)
Hormone Therapy with Radiation
Most prostate cancers are driven by testosterone. Hormone therapy attempts to establish very low levels of testosterone in an attempt to control the cancer progression. Although it does not cure the cancer on its own, hormone therapy is often recommended in conjunction with radiation therapy for men with intermediate or high-risk localized disease. However, hormone therapy has significant side effects, and the decision to undergo it should not be made lightly. When offered as short-term therapy in conjunction with radiation it is often well tolerated. How long one gives the hormonal therapy still remains controversial and depends on the aggressiveness of the cancer being treated. Please see Your Health Matters: Hormone Therapy for further information found on this page http://urology.ucsf.edu/patient-care/cancer/prostate-cancer

An increasing volume of literature suggests that for men with high-risk prostate cancer, the best treatment approach may well be so-called multimodal therapy—i.e., combining surgery, radiation therapy, and or systemic treatment depending to extent on the pathology report and PSA outcomes after surgery. This is a paradigm which has become standard of care over the years for other aggressive cancers such as breast cancer, rectal cancer, and others.

Cryosurgery
This procedure, which is used to treat localized prostate cancer, kills the cancer cells in the prostate by freezing them. Pressurized argon gas is circulated through special needles that are inserted into the prostate gland. The needles are maneuvered under ultrasound guidance to destroy prostate tissue. This method has shown good results in treating cancer confined to the prostate, but it is presently performed at only a few locations around the country, including UCSF. Some doctors maintain that to be most effective, the entire prostate must be frozen, which impacts the nerve bundles on the sides of the gland. Consequently, in some studies impotence has occurred in more than 90% of patients treated with cryosurgery. Urinary incontinence may also occur. While improvements with the technology has decreased the complication rate significantly, erectile problems are still very common following cryosurgery.

Some physicians are performing “focal” cryotherapy, where only the cancerous area of the prostate is treated, in patients where imaging studies indicate the presence of very limited disease. Microscopic amounts of cancer may be missed, however, and studies have shown mixed results with this approach. When appropriate, cryosurgery can be repeated if the cancer recurs. This treatment should only be performed in the context of a clinical study at this point.

Investigational Therapies: High Intensity Focused Ultrasound
A new treatment method, high intensity focused ultrasound (HIFU), may be capable of performing focal therapy for prostate cancer. HIFU attempts to kill cancer cells with high heat created by highly focused sound wave energy. HIFU has been used in Europe, Asia and Canada but is not FDA approved. Results in published studies to date have been very mixed, with some reporting excellent results, and others reporting high rates of retreatment and complications. Therefore HIFU is considered investigational in the United States and is available only through participation in clinical trials. UCSF urologists and radiologists will be collaborating on a new clinical trial using innovative MRI technology to guide HIFU waves.
Does it matter where my treatment is performed?
A large body of evidence supports the statement that in the case of surgery for prostate cancer, experience matters, and medical centers and surgeons who perform a high number of prostatectomies per year demonstrate better outcomes in terms of both cancer control and quality of life results than those performing a lower number. Similar data do not exist regarding radiation outcomes. However, performing brachytherapy well requires a high degree of expertise and experience, particularly in prostate ultrasound, and likewise there are many subtleties in terms of administration of external beam radiation therapy which likely translate to better outcomes by more experienced clinicians. No matter what a given surgeon’s or radiation oncologist’s practice volume is, however, he or she should be able to discuss his or her own outcomes both in terms of cancer control and quality of life.

When Further Treatment Is Needed

While the diagnosis and treatment of prostate cancer have improved significantly in recent years, the cancer can still recur. Not surprisingly, clinical studies show the likelihood is higher the more advanced the disease was in the first place, and the more time that has passed between diagnosis and treatment. Recurrence may be related to the type of initial treatment, but other factors are also involved, such as the original staging, Gleason score, extent of the cancer, and age of the patient. (See section on risk assessment.)

There are usually a number of treatment options that men in can consider to successfully treat or control recurrent cancer. Choosing among them will require a new decision-making process. It is essential that you and your physician continue to monitor your PSA on a quarterly basis for some period of time, no matter how successful your treatment has seemed to be.

Why Cancer Recurs

- Your cancer may have been **understaged** (meaning that it was more extensive than originally estimated) and/or **undergraded** (meaning that, once the prostate was removed, the tumor showed higher Gleason scores than in the pre-treatment biopsy). Understaging and undergrading have been discovered in up to one-third of pathology studies of the entire prostate following a prostatectomy. Understaging or undergrading can also occur with treatments other than surgery.

- The cancer may have been **undertreated**. Sometimes pre-treatment scores indicate that a patient is in a higher risk category, but the patient undergoes only a single treatment method that is unlikely to be effective by itself.

- The **biology** of the cancer may make it likely to recur even after the best treatment. On very rare occasions, the cancer may also change into a different form, for example, from adenocarcinoma to small-cell cancer.

The PSA as an Indicator of Remaining or Recurrent Cancer

If your prostate has been surgically removed, you may find indications that the cancer was understaged and undergraded in the post-operative pathology examination. However, the most common sign that the cancer has not been completely removed or has recurred is a rising PSA. Not all patients with a rising PSA will go on to develop metastatic prostate cancer, and not all patients will face the possibility of a life-threatening form of the disease. Indeed some patients with a late, low rising PSA may not require immediate treatment. The severity of the relapse can be determined by reviewing how soon the PSA started to rise after treatment and how quickly it is rising. This is frequently referred to as the PSA “doubling time” (PSADT), which is expressed generally in months.
Radical Prostatectomy – The PSA should be 0.1 or less after a successful surgery, depending on the sensitivity of the particular laboratory’s test. If the post-operative pathology report does not show positive margins, but the PSA reaches 0.2 or higher, and then continues to rise, the cancer may still be present. Some labs are able to detect PSA at much lower thresholds depending on the assay used by each lab. These “ultrasensitive” assays allow for earlier detection of PSA at levels as low as 0.015. Here at UCSF, we always use an ultrasensitive assay.

External Beam Radiation Therapy – Following this form of treatment, it can take from several months to two years or more for the PSA to reach its lowest point (the nadir). If the nadir does not reach 0.5 or below, concern should be raised about treatment failure. A continued rise in the PSA over three consecutive measurement points is a strong indication that EBRT has not adequately treated the cancer.

Brachytherapy (seed implants) – As with EBRT, the PSA nadir may not be reached for up to two years or more after treatment has ended. A temporary spike in the PSA may occur after a year or more in up to one third of seed implant patients; the average value of this PSA spike is 0.7. (This happens less frequently with EBRT.) The PSA then resumes its downward course, but this spike may arouse anxiety in patients. Failure in brachytherapy is less clearly defined than with EBRT, but a continued rise in the PSA over three or more consecutive measurement points can indicate that the treatment may be inadequate.

Hormone Therapy – Hormone therapy is designed to block the male sex hormone testosterone, because testosterone often makes prostate cancers grow. A continued rise in the PSA while the patient is still on hormone therapy is a strong indication that the cancer may be starting to become less dependent on testosterone. In some cases, the cancer begins producing its own testosterone. Consequently, the hormone therapy may become increasingly ineffective at controlling the cancer. Testosterone should be measured quarterly to ensure that hormone therapy is still blocking testosterone effectively. For those that develop “castrate resistant prostate cancer,” several new, effective agents have been approved over the last three to five years.

Combined Therapies – When treatments are combined, for example hormone therapy and radiation, the PSA may be lower than the guide PSA numbers indicated above for single treatments. It is not unusual to see PSA levels of 0.1 or less when treatment includes hormone therapy. The PSA may rise for a while after hormone therapy is stopped and then resume its decline to the nadir.

Options for Dealing with Recurrence
If a man has undergone surgery as an initial treatment, revisiting the post-operative pathology report may help to identify what may have contributed to a recurrence. If there was still cancer present (positive margins) or the cancer was more aggressive (higher Gleason scores were detected), then several options are available:

☒ Some form of external radiation to the pelvis may be prescribed.

☒ External radiation is often accompanied by hormone therapy. The duration of hormone therapy will depend on the Gleason score and staging of the cancer.

☒ Systemic treatment using hormonal therapy may be given to those at risk for metastatic disease. Active surveillance with its implied monitoring may be appropriate if the remaining cancer appears insignificant. You and your physician can decide when and whether to intervene more aggressively.
For patients who chose an initial therapy other than surgery, a “salvage” prostatectomy is possible, but it is more likely to result in incontinence and/or impotence when performed after previous treatments. Advanced imaging techniques such as CT scans, MRI’s and MRSI’s may be helpful in determining where the cancer is located.

If you seek additional treatment, you may be eligible to participate in an appropriate clinical trial. You can research this with the help of your doctor.

New Treatment Approaches and Clinical Trials

What Are Clinical Trials?
Clinical trials are medically supervised, carefully controlled patient studies that attempt to determine whether a proposed new treatment is both safe and effective. Clinical trials also look at whether a new treatment can lead to better outcomes than existing treatments. These studies may include combinations of researchers such as physicians, geneticists, biologists, chemists and psychologists.

New treatments are continually being developed for prostate cancer. Many prostate cancer trials are designated for patients with a rising PSA after local treatment or for men with advanced, metastatic cancers. However, there are still many trials for men with less aggressive cancer, such as the active surveillance trial at UCSF. A number of the new agents and treatments show promise—some as simple as lifestyle changes in diet and exercise.

Funding sources for clinical trials include the National Cancer Institute, universities and medical centers, private research foundations, pharmaceutical and biotechnology companies, or some combination of these groups. Trials always occur in phases.

• Phase I studies determine safe and therapeutic dosage levels
• Phase II trials determine whether the new agent is beneficial
• Phase III trials extend the test to a large group that receives the experimental treatment. Results are compared with results from a control group receiving standard therapy and/or a placebo. After a successful Phase III trial, the new treatment must still be formally approved by the Food and Drug Administration (FDA) for use in appropriate patients.

Should You Participate?
Clinical trials can offer hope and the chance for you and society to benefit from a promising new treatment, but they have their risks. Any patient considering participating in a trial should ask himself and his treating doctor:

• Do I fit the criteria for inclusion?
• How might I benefit from participating?
• What are the probable side effects?
• What if I’m placed in the control group that doesn’t get the treatment or medication? (In many trials, those receiving the placebo will “cross over” later on and receive the active treatment.)
• What will happen if I quit or am dropped from the trial?
• What will happen if my condition gets worse while I am in the trial?
Accessing Clinical Trials at UCSF

Clinical trials are conducted at hospitals, clinics and centers around the country, and participants are often actively recruited. UCSF is currently conducting research in four main areas:

1. Identification of genetic and lifestyle factors that predispose men to clinically significant prostate cancer.

2. Discovering alterations in genes and proteins to improve current prostate cancer treatment.

3. Developing new therapies for men with recurrent widespread prostate cancer.

4. Preventing progression of early stage untreated disease.

For more information, call the Urologic Oncology Clinic (415/353-7171) and ask to speak with a nurse about clinical trials. He or she can get you directed to the appropriate physician and trial for your particular situation.

Complementary and Alternative Therapies

Definitions

There is an important distinction between "complementary" and "alternative" therapies.

- **Complementary** therapies, such as exercise and diet changes, are undertaken in addition to conventional medical treatment. Health providers are often supportive of complementary therapies, depending on your particular situation.

- **Alternative** therapies are undertaken instead of conventional medical treatment. They therefore carry more risks associated with their use and should be examined and implemented with more caution.

Many therapies can fall into either category. Some interfere with standard medical treatment or cause serious side effects, so be sure to advise your physician if you are considering these therapies. Lifestyle changes are likely to be helpful in both controlling and reducing the risk of getting prostate cancer. UCSF is a leader in coordinating clinical trials of diet, exercise and stress in prostate cancer. In addition, every prostate cancer patient treated at UCSF receives open access to a nutritionist/dietician to help plan a healthy diet and to address diet issues that may arise during treatment.

Nutrition and Prostate Cancer

Researchers are still learning about potential links between diet and prostate cancer through ongoing studies. It is well established that following a healthy diet reduces the risk for cardiovascular disease—a leading cause of death for men, including those with prostate cancer. Many of the current dietary recommendations for men with prostate cancer follow heart-healthy guidelines.

Healthy Eating Guidelines

Eat a plant-based diet. A diet high in vegetables, fruits, whole grains and beans provides important nutrients including vitamins, minerals, fiber and phytochemicals (lycopene, carotenoids, indoles and flavonols). Plant foods that may be particularly protective against prostate cancer include cooked tomato products like tomato sauce, cruciferous vegetables such as broccoli and cabbage, and pomegranates.
Aim to cover at least two thirds of your plate with plant foods. Limit animal foods, particularly processed red meats, poultry with skin, egg yolks, and dairy. Aim to eat at least 4-5 cups of colorful vegetables and fruits daily. For example have 2-3 pieces of fruit, 1 cup or more of vegetables with lunch and dinner and 1 cup of vegetables as a snack daily.

Opt for whole grains and limit added sugars. Examples of foods made with refined grains are white bread, white rice and pasta. Some foods high in added sugars include sugary drinks, desserts, candy, and processed foods like muffins and sweetened cereals. These foods are loaded with calories yet offer very little nutritive value, and they promote weight gain. It is best to avoid or eat these foods only occasionally. On the other hand, whole grains such as oats, barley, brown rice, quinoa, bulgur, spelt, wild rice and whole wheat are nutrient-dense and provide your body with a good source of energy.

Choose whole grains instead of refined grains. Choose breads and grain products that list a whole or sprouted grain or whole-grain flour as the first ingredient.

Choose healthy fats in moderate amounts. Some studies have found that omega-3 fatty acids may decrease prostate cancer risk and progression. Omega-3 fatty acids are found in cold-water fatty fish such as salmon, sardines, black cod, trout and herring and in plant foods including ground flaxseed, chia seeds, walnuts, and pumpkin seeds. Consuming fat from vegetable sources such as olive oil-based salad dressings and nuts after your diagnosis may also reduce the risk of prostate cancer progression and all-cause mortality.

Replace saturated and trans fats with fats from vegetable sources such as olive oil-based salad dressings and nuts, and aim for two or more servings of fish per week. Minimize processed meats (e.g. bacon, hot dogs, salami), poultry skin, egg yolks, and full-fat dairy products such as whole milk, butter, and cheese.

For more detailed information on nutrition and prostate cancer, including the important subject of supplementation, please visit our online document Your Health Matters: Nutrition and Prostate Cancer found at the bottom of: http://urology.ucsf.edu/patient-care/cancer/prostate-cancer

Exercise and Prostate Cancer

Exercise is a valuable tool in managing cancer treatment. It has few side effects, and it may also reduce rates of prostate cancer recurrence and mortality. Exercise is helpful before, during, and after cancer treatment. It can improve how well you tolerate your treatments, decrease side effects, and improve sleep. Following treatment, an exercise program can improve mobility, strength, and cardiovascular fitness. Exercise need not be intense to promote these benefits.

The Bottom Line
Research and clinical guidelines all come down to this: avoid inactivity!

Consult Your Doctor Before You Start
Before starting a new exercise program, check with your doctor or other health care practitioner. Find out if there are special precautions you need to take, or issues that you or your instructor/trainer need to consider. It is often standard procedure for the program director or trainer to ask for a letter from your doctor giving you medical clearance to begin a program of exercise.
Learn What Types of Exercise Will Work Best for You
There are different types of exercise and each has its own benefits. A balanced program includes regular activities from each of the circles in the chart below. The key to most lifestyle changes is to start slowly, develop a routine that fits your lifestyle, and maintain that routine over time.

When Should You Start Exercising?
Begin exercising as soon as possible following surgery or other phases of cancer treatment. Do whatever is possible and work towards meeting the recommended amount. Anything is better than nothing!

What Amount of Exercise Is Recommended?
Guidelines on recommended levels of exercise are as follows:
- AEROBIC EXERCISE = 150 minutes per week (progress by increasing time and intensity)
- STRENGTH TRAINING = 2 weekly sessions that include exercises for major muscle groups
- FLEXIBILITY = Everyday (examples: stretching, yoga)

Consult an Exercise Counselor
To schedule a free exercise program design consultation at UCSF, you can contact the Cancer Resource Center at (415) 514-6430. Sessions are available for UCSF patients by appointment only at the Cancer Resource Center, 1600 Divisadero St., Room B101 (on the first floor next to the Gift Shop).

Cautions for Exercise
During exercise, stop immediately if you experience any unusual symptoms such as shortness of breath, chest pain, dizziness, muscle pain, clamminess, headaches, irregular heartbeat, excessive sweating or any joint or limb pain. If these persist, contact your doctor right away.

Stress Reduction Exercises
Many activities can help reduce stress and anxiety. These include various meditation practices, modifying your breathing rhythm, visualization, relaxation exercises and massage. Recent Harvard research has shown that daily meditation lowers high blood pressure by increasing the level of nitrous oxide in the blood stream, thus dilating the blood vessels. Acupuncture, increasingly accepted by Western medicine, can reduce pain and discomfort. Stylized exercises such as tai chi, qigong and yoga can help people become more at ease with themselves. Classes and groups are available to teach these techniques at the UCSF Ida and Joseph Friend Cancer Resource Center, as well as the UCSF Osher Center for Integrative Medicine (415/353-7700). These centers can provide information and direct you to helpful resources. A diagnosis of cancer can lead to an examination of one's life and how it is lived, resulting in positive changes in work, play, relationships, and personal and social practices that accentuate the positive and reduce the more stressful and negative aspects of daily life.
Dealing With Anxiety, Distress, and Uncertainty

“I heard the doctor say, ‘I’m sorry; the test results show that you have prostate cancer.’ I heard nothing else. My mind went blank, and then I kept thinking, ‘No, there must be some mistake.’” Learning that you have prostate cancer can come as a shock. How did you react? You may have felt numb, frightened, or angry. You may not have believed what the doctor was saying. You may have felt all alone, even if your friends and family were in the same room with you. These feelings are all normal.

For many people, the first few days and weeks after diagnosis are very difficult. After you hear the word “cancer,” you may have trouble breathing or listening to what is being said. When you are at home, you may have trouble thinking, eating, or sleeping. People diagnosed with cancer and those close to them experience a wide range of feelings and emotions. These feelings can change often and without warning.

Getting knowledge and support – It is normal to be confused at first. However becoming knowledgeable about prostate cancer and the different treatment options available to you may diminish this distress and enable you to make more informed treatment decisions. This process is helped by support from family, friends and health care professionals, and by learning how to take charge of your treatment. The most important step you can take is to seek help as soon as you feel you are having trouble coping. Don’t go it alone; reach out to others, such as your physician or trusted friends, and let them know about your struggles and any mood changes. Taking action early will enable you to understand and deal with the many effects of your illness.

Living with uncertainty – Learning to live with the basic uncertainty about treatment outcomes is a challenge for anyone. There are no absolute guarantees that a “cure” has been achieved, even with confirmed good findings at the time of treatment, and a number of years being disease free-after treatment. The PSA level should be monitored at appropriate intervals for the rest of your life. Some men experience temporary “PSA-anxiety” around the time the test is done. But many men and their families live their lives without obsessive worry that the cancer may return.

What can help you – A variety of sources can provide information and support to help you during diagnosis, treatment and beyond, including:

- Your physicians and other medical team members
- Books and articles
- Support groups, in person and on the internet
- Networking with other prostate cancer patients

The UCSF Ida and Joseph Friend Cancer Resource Center offers special events, classes and support groups, and the staff can help link you to counseling and supportive services. For those seeking online resources but lacking access, computer access may be available at your local library. Local cancer centers may also provide Internet access and often have staff to assist you with your search for information. Be careful to validate the information you find on websites not associated with accredited cancer treatment facilities or endorsed by the American Cancer Society or other reputable cancer information facilities. UCSF’s Prostate Cancer Support group meets monthly. Please contact 707-537-6785 for more information.
Getting Second Opinions
Because understanding the different treatments and then choosing among them isn’t easy, getting multiple opinions may be a necessary part of your decision-making. In the course of developing a treatment approach for yourself, you may consult with a urologist (surgeon), radiation oncologist, and medical oncologist, along with your primary care physician and other medical specialists. They may bring differing perspectives to the assessment of your cancer and to their treatment recommendations. It is helpful to prepare yourself in advance for a meeting with any doctor. Write out a list of questions you want to ask, bring along a partner or a friend, and record the discussion for future reference. The Ida and Joseph Friend Cancer Resource Center at UCSF has a good list of questions you can review and bring to your office visit.

Keeping Good Records
It is very helpful to keep a complete and well-organized medical record, with copies of your laboratory work, diagnostic studies and treatment recommendations, and the treatment reports with the outcomes. This will help you get the most out of your second opinions, deal with insurance companies, and play a more active role in your treatment. Test results in particular can provide baseline data about your condition, help you monitor the outcome of your treatment, and alert you to the need for possible changes in your treatment approach.

Involving the Family
Many are affected by a cancer diagnosis – Prostate cancer affects not just the patient, but family and friends as well. Keeping them informed and involving them in decision-making is helpful to everyone involved. Wives, partners and children, who may become fearful about losing a mate or parent, may not be able to express these fears directly. Studies have shown that the wives, partners, and family caregivers of prostate cancer patients are at increased risk for anxiety, depression and other symptoms of distress. Keeping communication channels open and discussing fears and hopes openly can be helpful. In some instances, the wife or partner may become the more active person in getting information about the disease, arranging for and participating in medical visits, and supporting continued action and decision-making. The UCSF Ida and Joseph Friend Cancer Resource Center staff can help link your loved ones to supportive services and information.

It may be appropriate to have frank talks about risk reduction measures with adult sons and brothers, who may be at greater risk for developing prostate cancer. In some families, the increased risk may be related to known, inherited or genetic factors. Suspicions are raised about a genetic predisposition when prostate cancer occurs in multiple family members, when the diagnosis occurs at age 60 or younger, and/or when there is a family history of cancer. Family members who are at increased risk may reduce their risk through regular screening and risk reduction strategies. Patients are encouraged to discuss their medical family histories with their doctors.

Genetic counseling – In some families, genetic testing may identify altered genes that increase the risk for cancer and are passed from parent to child. Patients and family members may find it helpful to consult with trained genetic counselors and physicians. They can provide accurate family history assessment, education and counseling, offer genetic testing for cancer predisposition genes (when appropriate), and discuss screening and risk reduction options for patients and family members. These services are available through the UCSF Prostate Cancer Risk and Prevention Program. 415/885-7779.
Sexuality and Intimacy

Prostate cancer treatment does affect sexuality – Every treatment for prostate cancer can have side effects including impact on sexual drive and functioning, often in a major way. The man may have to cope with the prospect and then the actuality of partial or total impotence. This can create anxiety, a sense of loss, and/or a lowered self-esteem, which in turn can affect and disrupt the sexual relationship with the man's partner. If the relationship is to remain mutually satisfying for both partners, significant changes may have to be made over time in the attitudes, behavior, and interaction of the partners. However, many men do have very satisfying sexual relationships after treatment.

Dealing with sexual concerns and changes – Various concerns may emerge during and after treatment. A man's anxiety about his difficulty in getting an erection and/or a lessening of sexual drive, may lead to his avoiding sexual activity with his partner. But men often overestimate their partners’ need for frequent sexual intercourse, as compared with other means of showing love and physical closeness. An adjustment in how partners relate to each other may be needed. Partners need to be open with each other, comfortable and direct in expressing their desires, fears and hopes, and be willing to work out their differences in a mutually respectful way. As mentioned previously, various aids are available to help a man get an erection, if desired. A recommended book on the subject is The Lovin' Ain't Over by Ralph and Barbara Alterowitz.

Join a Support Group
A support group can help both the man with prostate cancer and his loved ones, before, during and after treatment. Studies have shown the value of support groups in helping with decision-making, enhancing quality of life and possibly in prolonging life. Being with other men with prostate cancer who have been successfully treated can be tremendously reassuring. Hearing how others approached their decision-making, what their actual experiences were, and how they coped with the consequences of their treatment is also very helpful. This also applies to men whose initial treatment has failed or who are dealing with recurrence of their cancer. Many support groups (including Us Too www.usto.org enable partners and loved ones to participate, and/or to have their own meetings. The local office of the American Cancer Society is a good source of information about support groups in your area, as is the UCSF Ida and Joseph Friend Cancer Resource Center. The Helen Diller Family Comprehensive Cancer Center also offers a peer support program where cancer patients can speak with others who have already “been there.” This confidential on-the-phone service is free for patients and caregivers. All are welcome, regardless of where the care is received. See http://cancer.ucsf.edu/crc/peer-support UCSF's Prostate Cancer Support group meets monthly. Please contact 707-537-6785 for more information.

Keeping a Positive Attitude

- Learning more about prostate cancer and its treatment is one way to develop a positive attitude. As you get more information about treatment options and what that means for you, feelings of hope and optimism will emerge more frequently.

- Recognize that everyone copes differently and benefits from different types of support. Become aware of what feels most supportive to you.

- Try to incorporate activities and people that bring you a sense of joy, peace and healing. This may mean joining a support group, spending more time with family, seeking individual counseling, varying your daily routine, setting aside special days for yourself, or spending time alone in nature. Schedule pleasant events to boost your mood and cultivate perspective.
Glossary

Adjuvant therapy - The use of hormone therapy or chemotherapy after surgery or radiation therapy as part of cancer treatment. Compare with neoadjuvant.

Adrenal glands - Glands located above each kidney that produce several kinds of hormones, including a small amount of sex hormones.

Androgen - A male sex hormone. The main one is testosterone.

Anti-androgen - A drug that blocks the action of male sex hormones on prostate and other cells.

Benign - Refers to a tumor that is not malignant and does not spread.

Benign prostatic hyperplasia (BPH) - A non-cancerous enlargement of the prostate that may cause difficulty in urination.

Biopsy - A procedure that removes small samples of tissue from the body for examination.

Brachytherapy - A treatment in which radioactive material is inserted into and/or near the prostate.

Cancer - A general term for more than 100 diseases characterized by the abnormal and uncontrolled growth of cells, which may eventually spread to other parts of the body.

Capsule - A thin layer of tissue that encases the prostate gland.

Catheter - A thin, flexible tube inserted through the urethra into the bladder to drain urine.

Chemotherapy - The use of one or more strong drugs to treat or control a cancer.

Clinical trial - The systematic investigation in human subjects of the safety and effectiveness of a procedure or drug designed to diagnose or treat a specific disease.

Combination therapy - The use of two or more modes of treatment (e.g. surgery, radiotherapy, chemotherapy, hormone therapy, immunotherapy) in combination to achieve optimum results against cancer or other disease.

Control group - A group of patients in a clinical trial that receives either a standard treatment or no treatment, that is compared with an experimental group that is receiving a proposed new treatment that might be more effective.

Cryosurgery - A procedure that uses extremely cold liquid nitrogen to destroy cancer cells.

Decipher™ test from GenomeDx Biosciences is performed with tissue obtained either from a biopsy or prostatectomy that measures how aggressive a cancer is likely to be.

Digital rectal exam (DRE) - A screening procedure for prostate cancer where a doctor inserts a gloved, lubricated finger into the rectum to feel the size and shape of the prostate.

Double-blind - Characteristic of a controlled experiment in which neither the patient nor the attending physician knows whether the patient is getting one or another drug or dose.

Dry orgasm - Sexual climax without the release of seminal fluid.

Ejaculation - The release of fluid containing semen through the penis during orgasm.

Erectile dysfunction - Difficulty in achieving an erection.

Estrogen - A female sex hormone.

External beam radiation therapy - The use of high-energy x-rays or heavy particles (protons) aimed from outside the body to treat a cancer.
Free PSA - Most PSA in the blood is bound to serum proteins. A small amount is not protein bound and is called ‘free PSA’. In men with prostate cancer the ratio of free (unbound) PSA to total PSA is decreased.

Gleason system (grade and score) - This system is used to determine how aggressive a prostate cancer is. Samples of prostate cancer cells are examined under a microscope and graded by number according to how much they differ from normal prostate cells. These grades are then added for an overall score.

Hormone - A chemical product of one of the endocrine glands of the body, which is secreted into body fluids and has a specific effect on other cells or organs.

Hormone therapy - A treatment method for prostate cancer that interferes with the production and/or activity of testosterone and other male hormones that promote prostate cancer growth.

Imaging tests - A variety of tests that produce pictures of the inside of the body to help diagnose and stage a cancer.

Immune system - A complex network of organs, cells, and specialized substances distributed throughout the body that defend it from foreign organisms that cause infection or disease.

Immunotherapy - An experimental method of treating cancer that stimulates the body's immune defense system to identify and attack the cancer cells.

Impotence - Inability to have an unassisted erection. Also called erectile dysfunction.

Incontinence - Inability to control the flow of urine from the bladder (urinary incontinence), or the passage of feces from the intestines (fecal incontinence.).

Informed consent - The process in which a patient learns about and understands the purpose and aspects of a treatment or clinical trial and then agrees to participate.

Internal radiation therapy (see brachytherapy) - The placement of radioactive material inside an organ of the body to treat a cancer.

Kegel exercise – Exercise that tightens the pelvic floor and helps with urinary continence.

Localized therapy - A method of treating cancer only in the area where the cancer is.

Localized prostate cancer – Cancer that is confined to the prostate gland.

Locally advanced prostate cancer – Cancer that has spread locally outside of the prostate but not to other organs.

Luteinizing hormone-releasing hormone (LHRH) agonist - A class of drugs that are used as part of hormone therapy that shuts down the production of testosterone by the testes.

Lymph nodes or glands - Small, bean-shaped collections of tissue located along the channels of the lymphatic system that may trap infectious organisms or cancer cells.

Lymphatic system - The tissues and organs, including the bone marrow, spleen, thymus, and lymph nodes, which produce and store cells that fight infection and disease.

Malignant - Refers to a tumor that is cancerous and can grow and spread to other parts of the body.

Margin status – This refers to how close the cancer comes to the edge of tissues removed during surgery. A negative margin suggests all the cancer was removed, while a positive margin suggests that some cancer cells may remain.

Metastasis - The spread of cancer cells from the original tumor site through the blood and lymph vessels to other parts of the body to produce tumors at new sites.
Neoadjuvant - Therapy given before and/or during primary therapy.

Neurovascular bundles - Nerves and blood vessels running on either side of the prostate that allow the penis to become erect.

Oncologist - A doctor who specializes in treating cancer, either through surgery, radiation, or the administration of special drugs.

OncotypeDX® - A genetic test offered by Genomic Health Inc. performed with tissue obtained either from a biopsy or prostatectomy that measures how aggressive a cancer is likely to be.

Orchiectomy - Surgery to remove the testes, but not the scrotum.

Palpable tumor - A tumor in the prostate that can be felt during a digital rectal exam.

Pathologist - A doctor who identifies and grades diseases, in part by studying cells and tissues under a microscope.

Pelvic - Referring to the areas of the body located below the waist and surrounded by the hip and pubic bones.

Pelvic lymph node dissection - The removal of lymph nodes in the pelvic area to examine them for the presence of cancer cells.

Perineal - Referring to the area between the anus and scrotum that may be used as the site where a prostatectomy or brachytherapy will be performed.

Placebo - An inactive substance, used as a control, which may resemble a medication that is being evaluated for its treatment effectiveness in a clinical trial.

PCA3 - Prostate cancer antigen 3 (PCA3, also referred to as DD3) is a gene that expresses a non-coding RNA. PCA3 is only expressed in human prostate tissue, and the gene is highly overexpressed in prostate cancer.

Prognosis - A judgment made about the course of a disease and/or the probable outcome of its treatment.

Prolaris® assay from Myriad Genetics is a genetic test performed with tissue obtained either from a biopsy or prostatectomy that measures how aggressive a cancer is likely to be.

Prostate - A gland, part of the male reproductive system and located below the bladder, which produces fluid for the semen that carries sperm cells.

Prostate-specific antigen (PSA) - A protein produced by the prostate gland; its level can be determined by a blood test. The PSA test scores can be used to help detect prostate cancer, estimate the extent of the cancer, and monitor the results of the treatment(s) for the cancer.

Prostatic acid phosphatase (PAP) - An enzyme produced by the prostate gland. Changes in its level in the blood may help detect changes in the extent and nature of the prostate cancer.

Radical prostatectomy - Surgery to remove the entire prostate gland to treat prostate cancer. Also just called prostatectomy.

Rectum - The last six inches of the large intestine ending at the anus, which leads to the outside of the body.

Recurrence - A return of the cancer following the completion of treatment.

Remission - Disappearance of the signs and symptoms of cancer, either temporarily or permanently.

Risk - Refers to the likelihood of a person developing a certain disease, or an estimation of the probable success or failure of the treatment for that disease.
Screening - The use of different tests and/or examinations to detect the presence of cancer or other diseases at early stages.

Scrotum - The external sac or pouch that contains the testes.

Semen - The fluid that is released through the penis during orgasm. Semen is made up of sperm from the testicles and fluid from the prostate and seminal vesicles.

Seminal vesicles - Pouch-like organs located above the prostate that produce and store seminal fluid.

Side effect - A secondary and usually negative effect from a drug or procedure used to treat a disease.

Stage and staging - Stage is a term used to describe the size and extent of a cancer and whether it has progressed throughout the body. Staging refers to the tests and examinations done to determine the stage.

Standard treatment - A treatment or other intervention currently being used and considered to be of proven effectiveness on the basis of past studies.

Systemic therapy - Treatment that attempts to reach and affect cancer cells all over the body.

Testes - The two egg-shaped glands that produce sperm and male hormones.

Testosterone - The primary male sex hormone (androgen) produced mostly by the testes. It stimulates the growth and activity of the male sex organs, and also plays a role in the development of healthy bones. It also appears to be necessary for the growth of prostate cancer tumor cells.

Transrectal ultrasound (TRUS) - An imaging technique that uses sound waves and their echoes from an instrument inserted into the rectum to form a picture of the prostate and help locate sites of abnormal tissue.

Transurethral resection of the prostate (TURP) - The use of an instrument inserted through the penis to remove tissue from the prostate, usually to treat the symptoms of BPH.

Tumor - An abnormal and excessive growth of cells. This can be benign or malignant.

Urethra - The canal that carries urine from the bladder or semen from the sex glands to the outside of the body.

Urologist - A doctor who specializes in diseases of the urinary organs in females and the urinary and sex organs in males.